Northrop, J., Mukerji, I., Oliver, D. Examination of SecA monomer-dimer state in phospholipids: a FRET study. Manuscript in preparation for submission to Biochemistry.
Zheng, Z., Banerjee, T., Abolafia, J., Etson, C., Oliver, D. Re-evaluation of Escherichia coli SecYEG monomer-dimer function. Manuscript in preparation for submission to J. Bacteriol.
Northrop, J., Oliver, D.B., Mukerji, I. 2022. Förster Resonance Energy Transfer Mapping: A New Methodology to Elucidate Global Structural Features. J. Vis. Exp. (181), e63433, doi:10.3791/63433. Pages 1-25. JoVE
Oliver, D. 2019. Substrate proteins take shape at the improved bacterial translocon. J. Bacteriol. 201: e00618-18. PubMed
Banerjee, T., Zheng, Z., Abolafia, J., Harper, S., Oliver, D. 2017. The SecA protein deeply penetrates into the SecYEG channel during insertion, contacting most channel transmembrane helices and periplasmic regions. J. Biol. Chem. 292: 19693-19707. PubMed
Zhang, Q., Lahiri, S., Banerjee, T., Sun, Z., Oliver, D., Mukerji, I. 2017. Alignment of the protein substrate hairpin along the SecA two-helix finger primes protein transport in Escherichia coli. Proc. Natl. Acad. Sci. USA. 114: 9343-9348. PubMed
Banerjee, T., Lindenthal, C., Oliver, D. 2017. SecA functions in vivo as a discrete anti-parallel dimer to promote protein transport. Mol. Microbiol. 103: 439-451. PubMed
Zheng, Z., Blum, A., Banerjee, T., Wang, Q., Dantis, V., Oliver, D. 2016. Determination of the Oligomeric State of SecYEG Protein Secretion Channel Complex Using in Vivo Photo- and Disulfide Cross-linking. J. Biol. Chem. 291: 5997-6010. PubMed
Zhang, Q., Li, Y. Olson, R., Mukerji, M., Oliver, D. 2016. Conserved SecA Signal Peptide-Binding Site Revealed by Engineered Protein Chimeras and Förester Resonance Energy Transfer. Biochemistry 55 (9):1291-1300. PubMed
Auclair, S., Oliver, D., and Mukerji, I. 2013. Defining the solution state dimer structure of Escherichia coli SecA using Forester resonance energy transfer. Biochemistry 52: 2388-2401. PubMed
Das*, S., Grady*, L., Michtavy, J., Zhou, Y., Cohan, F., Hingorani, M., and Oliver, D. 2012. The variable sub-domain of Escherichia coli SecA functions to regulate SecA ATPase activity and ADP release. J. Bacteriol. 194: 2205-2213. * indicates that authors contributed equally to the publication. PubMed
Grady, L., Michtavy, J., and Oliver, D. 2012. Characterization of the Escherichia coli SecA signal peptide-binding site. J. Bacteriol. 194: 307-316. PubMed
Das, S. and Oliver, D. 2011. Mapping of the SecA-SecY and SecA-SecG interfaces by site-directed in vivo photocross-linking. J. Biol. Chem. 286: 12371-12380. PubMed
Auclair, S., Moses, J., Musial-Siwek, M., Kendall, D., Oliver, D., and Mukerji, I. 2010. Mapping of the signal peptide-binding domain of Escherichia coli SecA using Forster resonance energy transfer. Biochemistry 49: 782-792. PubMed
Das, S., Stivison, E., Folta-Stogniew, and Oliver, D. 2008. Re-examination of the role of the amino-terminus of SecA in promoting its dimerization and functional state. J. Bacteriol., 190: 7302-7307. PubMed
Jilaveanu, L. B. and Oliver, D. 2007. In vivo membrane topology of Escherichia coli SecA ATPase reveals extensive periplasmic exposure of multiple functionally important domains clustering on one face of SecA. J. Biol. Chem. 282: 4661-4668. PubMed
Jilaveanu, L. B. and Oliver, D. 2006. SecA dimer cross-linked at its subunit interface is functional for protein translocation. J. Bacteriol. 188: 335-338. PubMed
Banack, T., Clauson, N., Ogbaa, N., Villar, J., Oliver, D., and W. Firshein. 2005. Overexpression of the Hda DnaA-related protein in Escherichia coli inhibits multiplication, affects membrane permeability, and induces the SOS Response. J Bacteriol. 187: 8507-8510. PubMed
Jilaveanu, L., Zito, C. and D. Oliver. 2005. Dimeric SecA is essential for protein translocation. Proc. Natl. Acad. Sci. USA. 102: 7511-7516. PNAS
Zito*, C., Antony*, E., Hunt, J., Oliver, D. and M. Hingorani. 2005. Role of a conserved glutamate residue in the Escherichia coli SecA ATPase mechanism. J. Biol. Chem. 280: 14611-14619. (* indicates equal contributions) PubMed
Ding, H., Mukerji, I. and D. Oliver. 2003. Nucleotide and phospholipid-dependent control of PPXD and C-domain association for SecA ATPase. Biochemistry 42: 13468-13475. PubMed
Butkus, M., Prundeanu, L. and D. Oliver. 2003. Translocon “pulling” of nascent SecM controls the duration of its translational pause and secretion-responsive secA regulation. J. Bacteriol. 185: 6719–6722. PubMed
Zito, C. and D. Oliver. 2003. Two stage binding of SecA to the bacterial translocon regulates ribosome-translocon interaction. J. Biol. Chem. 278: 40640-40646. PubMed
Ding, H., Hunt, J., Mukerji, I. and D. Oliver. 2003. B. subtilis SecA ATPase exists as an antiparallel dimer in solution. Biochemistry 42: 8729-8738. PubMed
Kim, P. D., Banack, T., Lerman, D. M., Tracy, J. C., Camara, J. E., Crooke, E., Oliver, D. and W. Firshein. 2003. Identification of a novel membrane-associated gene product that suppresses the toxicity of a TrfA peptide from plasmid RK2 and its relationship to the DnaA host initiation protein. J. Bacteriol. 185: 1817-1824. PubMed
Hunt, J. F., Weinhauf, S., Henry, L., Fak, J. J., McNicholas, P., Oliver, D. B. and J. Deisenhofer. 2002. Nucleotide control of interdomain interactions in the conformational reaction cycle of SecA. Science 297: 2018-2026. PubMed
Oliver, D. and J. Galan. 2002. Protein Secretion. In The Desk Encyclopedia of Microbiology. J. Lederberg and M. Schaechter (eds.) Academic Press, San Diego. pp 847-865.
Sarker, S. and D. Oliver. 2002. Critical regions of secM that control its translation and secretion and promote secretion-specific secA regulation. J. Bacteriol. 184: 2360-2369. PubMed
Schmidt, M., Brosh, R., and D. Oliver. 2001. Escherichia coli SecA helicase activity is not required in vivo for efficient protein translocation or autogenous regulation. J. Biol Chem 276: 37076-37085. PubMed
Weinhauf, S., Hunt, J., Scheuring, J., Henry, L., Fak, J., Oliver, D., and J. Deisenhofer. 2001. Conformational stabilization and crystallization of the SecA translocation ATPase from Bacillus subtilis. Acta Crystal. D57: 559-565. PubMed
Ding. H., Mukerji, I., and D. Oliver. 2001. Lipid and signal peptide-induced conformational changes within the C-domain of Escherichia coli SecA protein. Biochemistry 40, 1835-1843. PubMed
Eggers, C., Casjens, S., Hayes, S., Garon, C., Damman, C., Oliver, D., S. Samuels. 2000. Bacteriophages of Spirochetes. J. Mol. Microbiol. Biotechnol. 2: 365-373. PubMed
Daman, C. J., Eggers, C. H. , Samuels, D. S., and D. B. Oliver. 2000. Characterization of Borrelia burgdorferi BlyA and Bly B proteins: a prophage-encoded holin-like system. J. Bacteriol. 182: 6791-6797. PubMed
Sarker, S., Rudd, K., and D. Oliver. 2000. Revised translation start site of secM defines an atypical signal peptide that regulates Escherichia coli secA expression. J. Bacteriol. 182: 5592-5595. PubMed
Kourtz, L. and D. Oliver. 2000. Tyr-326 plays a critical role in controlling SecA-preprotein interaction. Mol. Microbiol. 37: 1342-1356. PubMed
Dapic, V. and D. Oliver. 2000. Distinct membrane-binding properties of N- and C-terminal domains of Escherichia coli SecA ATPase. J. Biol. Chem. 275: 25000-25007. PubMed
Schmidt, M., Ding, H., Ramamurthy, V., Mukerji, I., and D. Oliver. 2000. Nucleotide binding activity of SecA homodimer is conformationally regulated by temperature and altered by azi and prlD mutations. J. Biol. Chem. 275: 15440-15448. JBC
Oliver, D. and J. Galan. 2000. Protein Secretion. In Encyclopedia of Microbiology, 2nd Edition. J. Lederberg (ed.) Academic Press, San Diego. Volume 3: 847-865.
Ramamurthy, V. and D. Oliver. 1998. secG and temperature modulate expression of azide resistant and signal sequence suppressor phenotypes of Escherichia coli secA mutants. J. Bacteriol.: 180: 6419-6423. PubMed
Oliver, D., Norman, J., and S. Sarker. 1998. Regulation of Escherichia coli secA by cellular protein secretion proficiency requires an intact geneX signal sequence and an active translocon. J. Bacteriol. 180: 5240-5242. PubMed
Kornacki, J. and D. Oliver. 1998. Lyme disease-causing Borrelia species encode multiple lipoproteins homologous to peptide-binding proteins of ABC-type transporters. Infection and Immunity 66: 4115-4122. PubMed
Guina, T., Helfet-Hilliker, D., Ramamurthy, V., and D. Oliver. 1998. Sequence and phylogenetic analysis of the Borrelia burgdorferi secA gene. Biochimica et Biophysica Acta. 1371: 24-30. PubMed
Ramamurthy, V. and D. Oliver. 1997. Topology of the integral membrane form of Escherichia coli SecA protein reveals multiple periplasmically exposed regions and modulation by ATP binding. J. Biol. Chem. 272: 23239-23246. PubMed
Guina, T. and D. Oliver. 1997. Cloning and analysis of a Borrelia burgdorferi membrane-interactive protein exhibiting hemolytic activity. Mol. Microbiol. 24: 1201-1213. PubMed
Snyders, S., Ramamurthy, V. and D. Oliver. 1997. Identification of a region of interaction between Escherichia coli SecA and SecY proteins. J. Biol. Chem. 272: 11302-11306. PubMed
Salavati, R. and D. Oliver. 1997. Identification of elements of geneX-secA RNA of Escherichia coli required for SecA binding and auto-regulation. J. Mol. Biol. 265: 142-152. PubMed
McNicholas, P., Salavati, R., and D. Oliver. 1997. Dual regulation of Escherichia coli secA translation by distinct upstream elements. J. Mol. Biol. 265: 128-141. PubMed
Oliver, D. 1996. Periplasm. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, 2nd edition. F.C. Neidhardt (ed.). ASM Press, Washington, D.C., pp 88-103.
Rajapandi, T. and D. Oliver. 1996. Integration of SecA protein into the E. coli inner membrane is regulated by its amino-terminal ATP-binding domain. Mol. Micro 20: 43-51. PubMed
Economou, A., Pogliano, J., Beckwith, J., Oliver, D., and W. Wickner. 1995. SecA membrane cycling at SecYEG is driven by distinct ATP binding and hydrolysis events and is regulated by SecD and SecF. Cell 83: 1171-1181. PubMed
McNicholas, P., Rajapandi, T., and D. Oliver. 1995. SecA proteins of Bacillus subtilis and Escherichia coli possess homologous amino-terminal ATP-binding domains regulating integration into the plasma membrane. J. Bacteriol. 177: 7231-7237. PubMed
Salavati, R. and D. Oliver. 1995. Competition between ribosome and SecA binding promotes E. coli secA translation regulation. RNA 1: 745-753. PubMed
Kim, Y., Rajapandi, T., and D. Oliver. 1994. SecA protein is exposed to the periplasmic surface of the Escherichia coli inner membrane in its active state. Cell 78: 845-853. PubMed
Rajapandi, T. and D. Oliver. 1994. ssaD1, a suppressor of secA51(Ts) that renders growth of Escherichia coli cold sensitive, is an early amber mutation in the transcription factor gene nusB. J. Bacteriol. 176: 4444-4447. PubMed
Rajapandi, T. and D. Oliver. 1994. Role of the carboxy-terminal region of SecA ATPase in promoting Escherichia coli protein export. Biochem. Biophys. Res. Commun. 200: 1477-1483. PubMed
Kim, Y. and D. Oliver. 1994. Escherichia coli SecY and SecE proteins apprear insufficient to constitute the SecA receptor. FEBS Lett. 339: 175-180. PubMed
Mitchell, C. and D. Oliver. 1993. Two distinct ATP-binding domains are needed to promote protein export by Escherichia coli SecA ATPase. Mol. Microbiol. 10: 483-497. PubMed
Oliver, D.B. 1993. SecA protein: autoregulated ATPase catalysing preprotein insertion and translocation across the Escherichia coli inner membrane. Mol. Microbiol. 7: 159-165. PubMed
Weaver, A. J., McDowall, A. W., Oliver, D. B., and J. Deisenhofer. 1992. Electron microscopy of thin-sectioned three dimensional crystals of SecA protein from Escherichia coli: Structure in projection at 40 Ao resolution. J. Struct. Biol. 109: 87-96. PubMed
Ulbrandt, N.D., London, E., and D. B. Oliver. 1992. Deep penetration of a portion of Escherichia coli SecA protein into model membranes is promoted by anionic phospholipids and by partial unfolding. J. Biol. Chem. 267: 15184-15192. PubMed
Rajapandi, T. D., Dolan, K. M., and D. B. Oliver. 1991. The first gene in the Escherichia coli secA operon, geneX, encodes a nonessential secretory protein. J. Bacteriol. 173: 7092-7097. PubMed
Dolan, K. M. and D. B. Oliver. 1991. Characterization of Escherichia coli SecA protein binding to a site on its mRNA involved in autoregulation. J. Biol. Chem. 266: 23329-23333. JBC
Cabelli, R. J., Dolan, K. M., Qian, L., and D. B. Oliver. 1991. Characterization of membrane-associated and soluble states of SecA protein from wild-type and secA51(Ts) mutant strains of Escherichia coli. J. Biol. Chem. 266: 24420-24427. PubMed
Schmidt, M. G., Dolan, K. M., and D. B. Oliver. 1991. Regulation of Escherichia coli secA mRNA translation by a secretion-responsive element. J. Bacteriol. 173: 6605-6611. PubMed
Jarosik, G. P. and D. B. Oliver. 1991. Isolation and analysis of dominant secA mutations in Escherichia coli. J. Bacteriol. 173: 860-868. PubMed
Oliver, D. B., Cabelli, R. J., Dolan, K. M., and G. P. Jarosik. 1990. Azide-resistant mutants of Escherichia coli alter the SecA protein, an azide-sensitive component of the protein export machinery. Proc. Natl. Acad. Sci. USA. 87: 8227-8231. PubMed
Oliver, D. B., Cabelli, R. J., and G. P. Jarosik. 1990. SecA protein: autoregulated initiator of secretory precursor protein translocation across the E. coli plasma membrane. J. Bioenergetics & Biomembranes 22:311-336. PubMed
Suh, J-W., Boylan, S. A., Thomas, S. M., Dolan, K. M., Oliver, D. B. and C. W. Price. 1990. Isolation of a secY homologue from Bacillus subtilis: evidence for a common protein export pathway in eubacteria. Molecular Microbiol. 4:305-314. PubMed
Lill, R., Cunningham, K., Brundage, L., Ito, K., Oliver, D. and W. Wickner. 1989. The SecA protein is the protein export ATPase of E. coli. EMBO J. 8:961-966. PubMed
Cunningham, K., Lill, R., Crooke, E., Rice, M., Wickner, W. and D.B. Oliver. 1989. The SecA protein is essential for the functional binding of proOmpA to the plasma membrane of E. coli. EMBO J. 8:955-960. PubMed
Schmidt, M.G. and D.B. Oliver. 1989. The SecA protein autogenously represses its own translation during normal protein secretion in Escherichia coli. J. Bacteriol. 171:643-649. PubMed
Fandl, J.P., Cabelli, R., Oliver, D.B. and P.C. Tai. 1988. SecA suppresses the temperature-sensitive secY24 defect in protein translocation in Escherichia coli membrane vesicles. Proc. Natl. Acad. Sci. USA 85:8953-8957. PubMed
Cabelli, R.J., Chen, L., Tai, P.C. and D.B. Oliver. 1988. SecA protein is required for secretory protein translocation into E. coli membrane vesicles. Cell 55:683-692. PubMed
Rollo, E.E. and D.B. Oliver. 1988. Regulation of the Escherichia coli secA gene by protein secretion defects: analysis of secA, secB, secD, and secY mutants. J. Bacteriol. 170:3281-3282. PubMed
Schmidt, M.G., Rollo, E.E., Grodberg, J. and Oliver, D.B. 1988. Nucleotide sequence of the secA gene of Escherichia coli. J. Bacteriol. 170:3404-3414. PubMed
Oliver, D. 1987. Molecular architecture and assembly: periplasm and protein secretion. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. F.C. Neidhardt (ed.). ASM Press, Washington, D.C., pp. 56-69.
Liss, L.R. and Oliver, D.B. 1986. Effects of secA mutations on the synthesis and secretion of proteins in Escherichia coli: evidence for a major export system for cell envelope proteins. J. Biol. Chem. 261:2299-2303. PubMed
Liss, L.R., Johnson, B.L. and Oliver, D.B. 1985. Export defect adjacent to the processing site of staphylococcal nuclease is suppressed by a pr1A mutation. J. Bacteriol. 164:925-928. PubMed
Oliver, D. 1985. Protein secretion in Escherichia coli. Ann. Rev. Microbiol. 39: 6l5-648. PubMed
Oliver, D. and Liss, L. 1985. PrlA-mediated suppression of signal sequence mutations is modulated by the secA gene product of Escherichia coli K12. J. Bacteriol. 161:817-819. PubMed
Oliver, D. 1985. Identification of five new essential genes involved in the synthesis of a secreted protein in Escherichia coli. J. Bacteriol. 161:285-291. PubMed
Kumamoto, C., Oliver, D. and Beckwith, J. 1984. Signal sequence mutations disrupt feedback between secretion of an exported protein and its synthesis in E. coli. Nature 308:863-864. PubMed
Michaelis, S., Inouye, H., Oliver, D. and Beckwith, J. 1983. Mutations that alter the signal sequence of alkaline phosphatase in Escherichia coli. J. Bacteriol. 154:366-374. PubMed
Oliver, D.B. and Beckwith, J. 1982. Regulation of a membrane component required for protein secretion in Escherichia coli. Cell 30: 311-319. PubMed
Oliver, D.B. and Beckwith, J. 1982. Identification of a new gene (secA) and gene product involved in the secretion of envelope proteins in Escherichia coli. J. Bacteriol. 150:656-691. PubMed
Carmichael, G.G., Schaffhausen, B.S., Dorsky, D.I., Oliver, D.B. and Benjamin, T.L. 1982. Carboxy terminus of polyoma middle-sized tumor antigen is required for attachment to membranes, associated protein kinase and cell transformation. Proc. Natl. Acad. Sci. USA 79:3569-3583. PubMed
Oliver, D., Kumamoto, C., Quinlan, M. and Beckwith, J. 1982. Pleiotropic mutants affecting the secretory apparatus of Escherichia coli. Ann. Microbiol. (Inst. Pasteur) 133A:105-110. PubMed
Oliver, D.B. and Beckwith, J. 1981. Escherichia coli mutant pleiotropically defective in the export of secreted proteins. Cell 25:765-772. PubMed
Oliver, D.B. and Crowther, R.A. 1981. DNA sequence of the tail fibre genes 36 and 37 of bacteriophage T4. J. Mol. Biol. 153:545-568. PubMed
Oliver, D.B., Malamy, M.H. and Goldberg, E.B. 1981. Cloned genes for bacteriophage T4 late functions are expressed in Escherichia coli. J. Mol. Biol. 152:267-283. PubMed
Oliver, D.B. and Goldberg, E.B. 1977. Protection of parental T4 DNA from a restriction exonuclease by the product of gene 2. J. Mol. Biol. 115:877-881. PubMed